US 6,263,339 B1

1

DYNAMIC OBJECT VISUALIZATION AND
CODE GENERATION

BACKGROUND

The present invention relates to business intelligence tools
for building applications on a database management system
(DBMS).

The advent of powerful, yet economical computers made
possible by advances in processor, memory and data storage
devices has made computers an integral part of modern
companies. An important class of application for these
computers includes a DBMS where information is collected
and organized according to a data model and searched using
queries. The DBMS allows users to perform operations such
as locating, adding, deleting and updating records stored in
the computer without a detailed knowledge of how the
information making up the records actually is stored in the
computer.

One powerful type of DBMS is known as a relational
DBMS where stored information appears to the user as a set
of tables, each of which is termed a relation. In each relation,
the information appears to be arranged in rows and columns,
with columns of data being related to each other by one or
more predetermined functions.

To access particular information in the relational DBMS,
a query compiler converts a user request, typically expressed
in a query language such as a Structured Query Language
(SQL), into a set of operations to be performed on one or
more input relations to yield a solution responsive to the
user’s request. Using the query language provided by the
DBMS, the user may develop application programs which
facilitate retrieval of the data from the DBMS, processing of
the data, and organization of the data into reports.

One issue in developing business intelligence tools is the
type of reports that the tool is to generate. Typically, the tool
generates certain pre-formatted reports using the query
language. Although the query language is easier to use then
conventional programing languages such as Basic or C, the
generation of each new report still requires a certain pro-
gramming expertise and can often take a substantial amount
of time.

SUMMARY

The invention provides user access to data through infor-
mation spaces called scenes that allow the user to
understand, view and navigate data. In one aspect, a method
for executing an application expressed as a scene graph is
disclosed. The scene graph is a hierarchical representation of
one or more objects, each object capable of generating code
associated with the object. The application is executed by
traversing the hierarchy of the scene graph; and for each
object stored in the scene graph, instructing each object to
self-execute.

Implementations of the invention include the following.
The method generates an execution image for each scene of
the scene graph by: retrieving byte code associated with
each node of the object; storing the byte code as part of the
scene; and generating the byte code execution image for the
scene. Further, the node is characterized as one of several
types. If the node type is a shape type, the method generates
a shape creation statement; generates a begin property
statement; for each property, generates a statement to set
each property associated with the object; and generates a
statement to commit each property. If the node type is a data
source type, the method generates a database query; deter-

10

15

20

25

30

35

40

45

50

55

60

65

2

mines column names for referenceable identifiers; generates
a statement to create the query; for each parameter, creates
a statement to set a query parameter value; and generates a
statement to execute the query. The byte code image is then
provided to an execution engine. An execution context is
then created for the byte code.

When the statement in the byte code is executed, the
method determines whether the statement is a create shape
statement, and if so: creating the shape; and storing the
shape in a context hash table using a tokenized shape name.
If the statement is a begin property statement, the method
searches for the shape in a context hash table; and executes
a begin method associated with the shape. If the statement
is a set property statement, the method searches for the shape
in a context hash table; evaluates a property expression
associated with the shape; and assigns a value to the prop-
erty. If the statement is an end property statement, the
method searches for the shape in a context hash table;
executes an end properties method associated with the shape
to commit the properties; initializes the shape; and adds the
shape to a display list. The method also refreshes a canvas
associated with the shape. Each property of the object is set,
and the object is notified before and after the setting the
property of the object.

In another aspect, an editor for visually editing data
representation is disclosed. The data has a parent graph and
one or more graphical data elements recursively nested in
the parent graph. The editor has a window for editing a
parent graph and one or more drill-down windows for
editing each of the one or more graphical data elements
nested in the parent graph, each of the graphical data
elements containing a nested graph.

Implementations of the editor includes one or more of the
following. An attribute window is associated with each of
the graphical data elements. The attribute window is used to
edit properties associated with a computer-implemented
object having an object state and one or more interfaces
providing access to the object state through a plurality of
attributes, each of the attributes defined as a functional
expression and referenceable at run-time as a data value. The
functional expression includes one or more of the following:
a function; an operator; a database column name; a variable;
and a constant. The attribute may be a static data value. The
functional expression may be parsed to generate a function
which is stored as a run-time value. The function may be
cloned and stored as a design time value if the function is a
constant. Further, an error message may be displayed if the
expression is invalid.

Advantages of the invention include one or more of the
following. The invention is a visual business intelligence
tool for building applications that extend beyond the limi-
tations inherent in conventional forms-based or report-based
applications. Specialized programmers are removed from
the application development process and users are moved
closer to the data so that application development time is
reduced. User interfaces can be created quickly and easily
for information rich databases and for applications such as
data warehousing and decision support.

The invention’s hyperlinks provides context and “look-
ahead” information to applications. This capability supports
several powerful advantages in building data-driven appli-
cations. First, users can see through portals into other views
of their data without losing the context of where they are.
The navigational path taken by a user browsing the appli-
cation can affect the application itself, thus providing
dynamic customization of the application. In addition, con-



